электрод стеклянный комбинированный **ЭСК-10309**

Паспорт ГРБА 418422.010-07 ПС

1 ОБЩИЕ СВЕДЕНИЯ, НАЗНАЧЕНИЕ

- 1.1 Электрод стеклянный комбинированный в пластмассовом корпусе ЭСК-10309 со встроенным одноключевым электродом сравнения и термодатчиком, предназначен в комплекте с электронным преобразователем (например, иономером или рН-метром) для измерений активности ионов водорода (рН) в водных растворах.
- **1.2** Электрод изготавливается в соответствии с ГОСТ 22261-94 и техническими условиями ТУ 4215-004-35918409-2009.

2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

2.1 Диапазон измерений рН при температуре раствора 20°C - от 0 до 14.

Примечание: Верхний предел диапазона измерений указан для растворов с концентрацией ионов Na^+ , не превышающей 0,1 моль/ ∂m^3 .

- **2.2** Отклонение водородной характеристики от линейности в диапазоне измерений pH и температуре раствора 20° C не более $\pm 0,2$ pH.
 - 2.3 Диапазон температур анализируемой среды от 20 до 80°C.
- **2.4** Электрическое сопротивление измерительного электрода при температуре 20°C от 500 до 1000 МОм.
- **2.5** Электрическое сопротивление внутреннего электрода сравнения при температуре 20°C не более 20 кОм
- **2.6** Крутизна водородной характеристики в ее линейной части по абсолютной величине, не менее, мВ/рН:
 - 57,0 при температуре 20°C;
 - 69,0 при температуре 80°C.
- **2.7** Значения координат изопотенциальной точки (p H_{u} , E_{u}) и допустимые отклонения их от номинальных значений приведены в таблице 1.

Координаты изопотенциальной точки и соответствующий им шифр приведены на этикетке электродов. Шифр указан после обозначения типа электрода и отделен от него косой чертой "/".

2.8 Потенциал ($E_{1.68}$) измерительного электрода при выпуске из производства в растворе тетраоксалата калия ($KH_3C_4O_8 \bullet 2H_2O$) с концентрацией 0,05 моль/дм³ при температуре раствора 20°C относительно встроенного электрода сравнения и допустимые отклонения его от номинальных значений приведены в таблице 1.

Таблица 1

•	опотенциальной чки	Е _{1.68} , мВ	Шифр	
рНи	Еи, мВ			
$4,0\pm0,3$	0 ± 30	134± 12	4	
$6,7 \pm 0,3$	18 ± 30	310± 12	7	

- **2.9** Потенциал внутреннего электрода сравнения при выпуске из производства в растворе хлорида калия с концентрацией 3 моль/дм³ при температуре раствора 20°C относительно электрода сравнения хлорсеребряного насыщенного равен (10 ± 5) мВ.
- **2.10** Скорость истечения раствора КСI концентрацией 3 моль/дм 3 из электролитического мостика внутреннего электрода сравнения при 20° C от 0,1 до 3,0 мл/сутки.

- **2.11** Нестабильность потенциала внутреннего электрода сравнения за 8 часов работы не более $\pm 0,5$ мВ.
 - 2.12 Габаритные размеры электрода, мм, не более:

диаметр - 12; длина - 165.

2.13 Зависимость сопротивления термодатчика от температуры приведена в таблице 2.

Таблица 2

Тип термодатчика	Сопротивление термодатчика, Ом, при температуре, °С			
	0	5	20	25
Pt 100	100,00	101,95	107,79	109,73
Pt 1000	1 000,0	1 019,5	1 077,9	1 097,3
NTC 10кОм	32 650	25 388	12 490	10 000
NTC 30кОм	95 501	74 745	37 332	30 000

Тип термодатчика	Сопротивление термодатчика, Ом, при температуре, °С			
	40	60	80	100
Pt 100	115,54	123,24	130,90	138,51
Pt 1000	1 155,4	1 232,4	1 309,0	1 385,1
NTC 10кОм	5 327	2 488	1 258	680,0
NTC 30кОм	16 123	7 584	3 840	2 073

Тип встроенного термодатчика указывается в обозначении модификации электрода.

2.14 Характеристики соединительного кабеля и разъема приведены в таблице 3.

Таблица 3

Тип разъема	Длина кабеля, мм	Код
Разъем BNC и разъем WT-1019	800	К 80.11
Разъем BNC и разъем RCA	800	K 80.12

Код кабеля приводится в скобках после обозначения типа электрода и шифра координат изопотенциальной точки.

2.15 Масса электрода с кабелем не более 120 г.

2.16 Сведения о содержании драгметаллов в одном электроде приведены в таблице 4.

Таблица 4

Наименование	Кол	Масса, г	Примечание
	1	0,3090 ч.в.	проволока Ср 999,9 ∅0,5
Электрод внутренний		0,0093 л.в.	AgCl
		(0,0070)ч.в	
	1	0,2640 ч.в.	проволока Ср 999,9 ∅0,5
Электрод сравнения		0,0270 л.в.	AgCl
		(0,0203 ч.в.)	
Всего:		0,6003 ч.в.	

2.17 Электрод является невосстанавливаемым однофункциональным изделием.

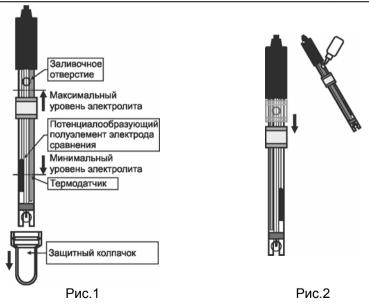
3 КОМПЛЕКТНОСТЬ

3.1 В комплект поставки входит:

- электрод ЭСК-10309/ ()(K)	- 1 шт.
- паспорт				- 1 экз
- флакон с электролитом				- 1 шт.
- упаковка				- 1 шт.

4 ПОДГОТОВКА К РАБОТЕ

- 4.1 Извлечь электрод из упаковки.
- **4.2** Убедиться в отсутствии механических повреждений электрода и соединительного кабеля.


Примечание: Наличие покрытия бурого цвета на проволочках, расположенных внутри электрода, и присутствие твердых частиц AgCl в жидкости, заполняющей электрод, необходимо для его работы и дефектом не является.

4.3 Сдвинуть вниз защитный поясок, закрывающий заливочное отверстие. Заполнить* электрод электролитом из флакона, входящего в комплект поставки, до уровня заливочного отверстия (рис 1, 2).

Внимание! Использовать электрод после заполнения электролитом можно не ранее, чем через 8 ч. Это время необходимо для того, чтобы рабочее вещество встроенного электрода сравнения и пористая керамика электролитического ключа пропитались раствором. Для улучшения протекания этого процесса рекомендуется выполнить операции по 5.5 а).

4.4 Снять защитный колпачок и поместить рабочую мембрану (шарик) электрода в раствор HCl концентрацией 0,1 моль/дм³ и выдержать в нем не менее 8 ч.

Внимание! В защитном колпачке может быть залит кондиционирующий раствор.

^{*} В теплое время года электрод может поставляться заполненный электролитом. В этом случае он в подготовке по 4.3-4.4 не нуждается и может использоваться немедленно.

4.5 Перед началом измерений следует убедиться в отсутствии воздушных пузырей внутри рабочей мембраны (шарике) электрода. При необходимости удалить их встряхиванием (как встряхивают медицинский термометр), при этом пузыри должны переместиться в верхнюю часть электрода.

Примечание: Наличие воздушных пузырей в указанных местах может приводить к неустойчивости и дрейфу показаний.

5 ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ

- **5.1** Перед началом измерений заливочное отверстие следует открыть.
- **5.2.** Глубина погружения электрода в раствор при измерении рН должна быть не менее 16 мм.
- **5.3** Уровень электролита в электроде должен поддерживаться в пределах показанных на рис. 2. При необходимости электролит следует доливать в электрод через заливочное отверстие.

Внимание! Для заполнения электрода должен применяться только раствор КСІ с концентрацией 3 моль/дм³. Применение других электролитов недопустимо.

- **5.4** При измерениях уровень электролита в электроде должен быть выше уровня анализируемого раствора.
- **5.5** Если в процессе эксплуатации произошло нарушение истечения электролита из электрода в результате засорения пористой керамики электролитического ключа*, то рекомендуется выполнить следующие действия:
- а) открыть заливочное отверстие, взять резиновую грушу, приставить носик груши к заливочному отверстию и, нажимая на грушу, создать внутри электрода избыточное давление:
- б) или поместить электрод в дистиллированную воду (рабочая мембрана электрода при этом не должна касаться дна стакана) и нагреть ее до кипения, выдержать в течение 5-10 мин и дать остыть естественным образом.
- **5.6** Рекомендуется раз в 4…6 месяцев полностью заменять электролит в электроде свежим раствором 3M KCI.
- **5.7** Не допускается применение электрода в растворах, содержащих фторид-ионы и вещества, образующие осадки и пленки на поверхности электрода.
- **5.8** Между измерениями электрод рекомендуется хранить в 3M растворе KCI.

6 ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ

- **6.1** Транспортирование электрода (незаполненного электролитом) проводить в упаковке при температуре воздуха от минус 25 до плюс 55°C и относительной влажности воздуха не более 95% при 25°C.
- **6.2** Хранить электрод на складах в упаковке при температуре 5÷40°C и относительной влажности воздуха 80% при 25°C.

7 ПОВЕРКА ЭЛЕКТРОДА

7.1 Поверка электрода осуществляется один раз в год по методике ГРБА.418422.004МП "Электроды стеклянные комбинированные ЭСК-1. Методика поверки".

^{*} Признаком засорения электролитического ключа является ухудшение устойчивости показаний измерительного прибора.

Внимание! Перед выполнением поверки электролит в электроде следует полностью заменить. Для этого необходимо слить старый электролит, тщательно промыть внутреннюю полость электрода дистиллированной водой и заполнить ее свежим раствором 3М КСІ. Операции по поверке должны выполняться не ранее чем через 8 часов после перезаполнения электрода.

8 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- **8.1** Изготовитель гарантирует соответствие электрода требованиям ТУ при соблюдении условий эксплуатации, транспортирования и хранения.
- **8.2** Гарантийный срок эксплуатации электрода 12 месяцев с момента продажи при наработке, не превышающей 1000 часов.

Гарантийный срок хранения 12 месяцев с момента изготовления.

- **8.3** В случае нарушения работоспособности электрода в период гарантийного срока он должен быть направлен в адрес предприятия-изготовителя вместе со следующими документами:
 - паспорт на электрод;
 - акт с указанием выявленных неисправностей;
- извещение о непригодности (в случае выявления брака службами ЦСМ) с обязательным приложением протокола испытаний.

Адрес предприятия-изготовителя: 109202, г. Москва, шоссе фрезер,12; ООО «Измерительная техника», т. (495) 232-49-74, 232-42-14.

9 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

9.1 При проведении испытаний, обслуживании и эксплуатации соблюдать требования безопасности по гост 12.1.007-76.

10 СВИДЕТЕЛЬСТВО О ПОВЕРКЕ

10.1 Электрод соответствует ГОСТ 22261-94 и техническим условиям ТУ 4215-004-35918409-2009, поверен и признан годным для эксплуатации.

Электрод №				
Дата изготовления				
МП ОТК				
Подпись контролера ОТК				
Дата поверки				
МП				
Подпись лиц, ответственных за поверку				
Дата продажи				
Продавец				