электрод ионоселективный **ЭЛИС-131Ag**

Паспорт ГРБА.418422.015-05 ПС

1 ОБЩИЕ СВЕДЕНИЯ. НАЗНАЧЕНИЕ

- 1.1 Электрод ионоселективный кристаллический ЭЛИС-131Ag предназначен совместно с электродом сравнения и электронным преобразователем (например, иономером) для измерения активности ионов серебра в растворах. Электрод является прибором общего назначения для использования в научных и промышленных аналитических лабораториях.
- **1.2** Электрод изготавливается в соответствии с ГОСТ 22261-94 и техническими условиями ТУ 4215-015-35918409-2007.

2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- **2.1** Диапазон измерений рАд при температуре 20°C от 1,0 до 6,3.
- **2.2** Отклонение электродной характеристики от линейности в диапазоне измерений рАq и температуре раствора 20°C не более ±6 мВ.
 - **2.3** Диапазон температур анализируемой среды от 5 до 50°C.
- **2.4** Величина рН анализируемого раствора должна быть в пределах от 2 до 9.
- **2.5** Электрическое сопротивление электрода при температуре 20°C от 10 до 100 кОм.
- **2.6** Крутизна электродной характеристики по абсолютной величине, не менее
 - 54 мВ/pAg при температуре 20°C;
 - 61 мВ/pAg при температуре 50°C.
- **2.7** Не допускается присутствие в анализируемом растворе ионов Hq^{2+} .
 - 2.8 Габаритные размеры электрода не более;

диаметр - 10 мм; длина - 113 мм.

2.9 Параметры соединительного кабеля и разъема приведены в таблице 1.

Таблица 1

Тип разъема	Длина кабеля, мм	Код
Штекер ГРБА.685611.009	800	K 80.3
Штепсель ШП 4-2 ГаО.364.008ТУ	800	K 80.5
Разъем BNC-7001	800	K 80.7

Код кабеля приводится после обозначения электрода.

- 2.10 Масса электрода с кабелем не более 70 г.
- 2.11 Электрод является невосстанавливаемым изделием.

3 КОМПЛЕКТНОСТЬ

3.1 В комплект поставки входит:

электрод ЭЛИС-131Ag - шт. паспорт - 1 шт. упаковка - 1 шт.

4 ПОДГОТОВКА К РАБОТЕ

- 4.1 Извлечь электрод из упаковки.
- **4.2** Убедиться в отсутствии механических повреждений электрода и соединительного кабеля.
- **4.3** Осмотреть рабочую мембрану электрода, на ней не должно быть царапин, отложений соли и других включений.
- **4.4** Электрод промыть дистиллированной водой. Нерастворимые в воде отложения и царапины на рабочей мембране удалить шлифовальной бумагой. Затем отполировать мембрану на фильтровальной бумаге, после чего промыть электрод дистиллированной водой.

5 ГРАДУИРОВКА И ИЗМЕРЕНИЯ

- **5.1** Ионоселективный электрод может применяться при реализации различных методов потенциометрического анализа, таких как прямая потенциометрия, потенциометрическое титрование, методы добавок. Большинство этих методов требует проведения градуировки электродов.
- **5.2** Для каждого объекта анализа должна применяться соответствующая методика выполнения измерений (МВИ), учитывающая особенности этого объекта. Методика включает в себя правила отбора, хранения и подготовки пробы, указания по градуировке электродов и проведению измерений, а также порядок вычисления результатов.
- **5.3** В случае отсутствия аттестованной МВИ может использоваться одна из нижеследующих методик градуировки и измерений.
- **5.4** Для измерений <u>активности</u> ионов Ag^+ при градуировке рекомендуется применять растворы нитрата серебра (AgNO₃) известной концентрации (см. ПРИЛОЖЕНИЕ п.п.1, 2).
- **5.5** Для измерения *концентрации* в градуировочные растворы следует добавить буферный раствор для регулирования общей ионной силы (БРОИС)(см. ПРИЛОЖЕНИЕ п.3).
- **5.6** Подключить электроды (ЭЛИС-131Ag и электрод сравнения) к измерительному прибору согласно инструкциям, приведенным в паспорте на прибор.

Примечание: электрод сравнения должен быть подготовлен к работе в соответствии с инструкцией по его эксплуатации.

Внимание! Растворы КСІ, обычно применяемые для заполнения электродов сравнения, взаимодействуют с растворами солей серебра с образованием малорастворимого соединения AgCI. Это может привести к искажению результатов измерений и нарушению работоспособности электрода сравнения в результате засорения электролитического ключа. Поэтому при работе с растворами, содержащими ионы серебра, следует применять либо двухключевой электрод сравнения, либо внешний электролитический мостик, заполненные раствором 1М KNO₃.

- **5.7** Операции градуировки.
- **5.7.1** Промыть электроды дистиллированной водой и осушить фильтровальной бумагой.
- **5.7.2** Погрузить электроды в градуировочный раствор с наименьшей концентрацией. Произвести измерения потенциала при помощи измерительного прибора с высоким входным сопротивлением (>10¹² Ом), работающего в режиме вольтметра. Записать результат измерений.
- **5.7.3** Извлечь электроды из раствора и осушить их фильтровальной бумагой.
- **5.7.4** Повторить операции по п.п. 5.7.1 5.7.3 в остальных градуировочных растворах в порядке возрастания их концентрации. Температура градуировочных растворов не должна отличаться более чем на 1°C.
- **5.7.5** По результатам измерений по п.п. 5.7.1 5.7.4 построить градуировочный график в координатах $E (-lg \ a_{Ag}^{\ \ \ \ })$ для определения $\underline{a\kappa-muвносmu}$ или $E (-lg \ M_{Ag}^{\ \ \ })$ для определения $\underline{kohuehmpauuu}$.

Взаимосвязь концентрации растворов AgNO₃ и активности ионов Ag⁺ в них приведены в таблице 2.

Таблица 2

I-							
Концентрация раствора	M _{Ag} ⁺ , моль/дм³	10 ⁻⁶	10 ⁻⁵	10 ⁻⁴	10 ⁻³	10 ⁻²	10 ⁻¹
	С _{Ад} ⁺ , мг/дм ³	0,11	1,08	10,79	107,9	1079	10790
	-lg C _{Aq} ⁺	6,00	5,00	4,00	3,00	2,00	1,00
Активность Ag ⁺	-lg a _{Aq}	6,00	5,00	4,00	3,02	2,05	1,13

- 5.8 Измерения.
- **5.8.1** Измерить потенциал электрода в растворе с неизвестной концентрацией и определить по градуировочному графику величину активности или концентрации ионов Ag^{\dagger} . Температура анализируемых растворов не должна отличатся более чем на $\pm 3^{\circ}C$ от температуры, при которой была проведена градуировка.

Примечание: при определении концентрации анализируемый раствор должен смешиваться с БРОИС, по той же схеме, что и градуировочные растворы.

5.9 При использовании в качестве измерительного прибора современного иономера нет необходимости в построении градуировочного графика. В этом случае градуировка осуществляется, как правило, по двум или более растворам (см. п.п. 5.4-5.5), согласно инструкции по эксплуатации иономера. Результаты градуировки прибор заносит в свою память, в дальнейшем при измерениях производит необходимые расчеты и выводит результат на дисплей.

6 ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ

- **6.1** Не допускается механическое повреждение мембраны электрода и использование электрода в растворах, содержащих вещества, образующие осадки и пленки на поверхности электрода.
- **6.2** При длительных перерывах в работе электрод следует промыть дистиллированной водой, осушить фильтровальной бумагой и надеть защитный колпачок. При последующем введении электрода в эксплуатацию следует повторить операции по п.4.3.

7 ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ

- **7.1** Транспортирование электрода проводить в упаковке при температуре воздуха от минус 5 до плюс 55°C и относительной влажности воздуха не более 95% при 25°C
- **7.2** Хранить электрод на складах в упаковке при температуре 5-40°C и относительной влажности воздуха 80% при 25°C.

8 ПОВЕРКА ЭЛЕКТРОДА

8.1 Поверка проводится в соответствии с документом «Электроды ионоселективные «ЭЛИС-1», Методика поверки» ГРБА.418422.015МП», утвержденным ГП «ВНИИФТРИ» 20.06.2002.

9 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- **9.1** Изготовитель гарантирует соответствие электрода требованиям ТУ при соблюдении условий эксплуатации, транспортирования и хранения.
- **9.2** Гарантийный срок эксплуатации электрода 9 мес. с момента ввода в эксплуатацию при наработке, не превышающей 1000 часов.

Гарантийный срок хранения 6 мес. до ввода в эксплуатацию.

- **9.3** В случае нарушения работоспособности электродов в период гарантийного срока он должен быть направлен в адрес предприятия-изготовителя вместе со следующими документами:
 - паспорт на электрод;
 - акт с указанием выявленных неисправностей
- извещение о непригодности (в случае выявления брака службами ЦСМ Госстандарта) с обязательным приложением протокола испытаний.

Адрес предприятия-изготовителя: 109202, г. Москва, шоссе Фрезер, 12. ООО «Измерительная техника», т.(495) 232-49-74, 232-42-14.

10 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

10.1 При проведении испытаний, обслуживании и эксплуатации электродов соблюдать требования безопасности, предусмотренные ГОСТ 12.1.007-76.

11 СВИДЕТЕЛЬСТВО О ПОВЕРКЕ

11.1 Электрод соответствует ГОСТ 22261-94 и техническим условиям ТУ 4215-015-35918409-2007, поверен и признан годным для эксплуатации.

Электрод №	
Дата изготовления	
МП ОТК	Подпись контролера ОТК.
Дата поверки <u> </u>	
МП	
	Подпись лиц, ответственных за поверку.
Дата продажи	
Продавец	

ПРИГОТОВЛЕНИЕ ГРАДУИРОВОЧНЫХ РАСТВОРОВ

Градуировочные растворы готовят из исходного раствора концентрацией $0,1\,$ моль/дм $^3\,$ AgNO $_3.$

- 1 Приготовление раствора с концентрацией 0,1 моль/дм³.
- **1.1** Взять навеску 16,99 г нитрата серебра (AgNO₃).
- **1.2** Поместить навеску в мерную колбу емкостью 1 дм³, заполнить колбу до половины дистиллированной водой. После растворения соли объем раствора довести до метки.
- **1.3** Остальные градуировочные растворы готовят из исходного раствора последовательным десятикратным разбавлением дистиллированной водой.
- **2** Приготовление градуировочных растворов с концентрацией $AgNO_3\ 10^{-2},\ 10^{-3},\ 10^{-4},\ 10^{-5}\ моль/дм^3$.
- **2.1** Отобрать пипеткой 10 см³ раствора AgNO₃ с концентрацией 0,1 моль/дм³, перенести в мерную колбу емкостью 100 см³ и довести дистиллированной водой объем раствора до метки. Перемешать взбалтыванием. Полученный раствор AgNO₃ имеет концентрацию 10⁻² моль/дм³.
- **2.2** Отобрать пипеткой 10 см³ раствора AgNO₃ с концентрацией 10⁻² моль/дм³, перенести в мерную колбу емкостью 100 см³ и довести дистиллированной водой объем раствора до метки. Перемешать взбалтыванием. Полученный раствор AgNO₃ имеет концентрацию 10⁻³ моль/дм³.
- **2.3** Отобрать пипеткой 10 см³ раствора AgNO₃ с концентрацией 10⁻³ моль/дм³, перенести в мерную колбу емкостью 100 см³ и довести дистиллированной водой объем раствора до метки. Перемешать взбалтыванием. Полученный раствор AgNO₃ имеет концентрацию 10⁻⁴ моль/дм³.
- **2.4** Отобрать пипеткой 10 см³ раствора AgNO₃ с концентрацией 10⁻⁴ моль/дм³, перенести в мерную колбу емкостью 100 см³ и довести дистиллированной водой объем раствора до метки. Перемешать взбалтыванием. Полученный раствор AgNO₃ имеет концентрацию— 10⁻⁵ моль/дм³.
- 3 Приготовление градуировочных растворов с добавлением фонового электролита для регулирования ионной силы (БРОИС).
- **3.1** В качестве БРОИС может применяться раствор KNO_3 с концентрацией 1 моль/дм³. Для его приготовления следует взять навеску 101,1 г KNO_3 , поместить ее в мерную колбу емкостью 1 дм³, заполнить колбу до половины дистиллированной водой. После растворения соли объем раствора довести до метки.
- **3.2** Отобрать пипеткой 50 см 3 раствора AgNO $_3$ с концентрацией 10^{-2} моль/дм 3 (приготовленный по п.2.1), перенести в стакан емкостью

100 см 3 . Отобрать пипеткой 10 см 3 БРОИС, перенести в тот же стакан и перемешать. Полученный раствор AgNO $_3$ имеет условную концентрацию – 10^{-2} моль/дм 3 .

3.3 Отобрать пипеткой 50 см³ раствора $AgNO_3$ с концентрацией 10^{-3} моль/дм³ (приготовленный по п.2.2), перенести в стакан емкостью 100 см³. Отобрать пипеткой 10 см³ BPOUC, перенести в тот же стакан и перемешать. Полученный раствор $AgNO_3$ имеет условную* концентрацию – 10^{-3} моль/дм³.

3.4 Отобрать пипеткой 50 см³ раствора AgNO₃ с концентрацией 10^{-4} моль/дм³ (приготовленный по п.2.3), перенести в стакан емкостью 100 см³. Отобрать пипеткой 10 см³ БРОИС, перенести в тот же стакан и перемешать. Полученный раствор AgNO₃ имеет условную* концентрацию – 10^{-4} моль/дм³.

3.5 Отобрать пипеткой 50 см³ раствора AgNO $_3$ с концентрацией 10^{-5} моль/дм³ (приготовленный по п.2.3), перенести в стакан емкостью 100 см³. Отобрать пипеткой 10 см³ БРОИС, перенести в тот же стакан и перемешать. Полученный раствор AgNO $_3$ имеет условную* концентрацию – 10^{-5} моль/дм³.

указанной. Обнако, поскольку в анализируемый растноор также с БРОИС, происходит «автоматический» учет этого разбавления.

*

Это то значение концентрации, которое должно использоваться при построении градуировочног графика или настройке иономера. Действительная концентрация этих растворов из-за разбавления фоновым раствором ниже указанной. Однако, поскольку в анализируемый раствор также добавляется