электрод сравнения **ЭСр-10105**

Паспорт ГРБА 418422.021-01 ПС

1 ОБШИЕ СВЕДЕНИЯ. НАЗНАЧЕНИЕ

1.1 Электрод сравнения ЭСр-10105 (одноключевой промышленный) предназначен для создания опорного потенциала при проведении потенциометрических измерений.

Электрод является прибором общего назначения для использования в научных и промышленных аналитических лабораториях.

1.2 Электрод изготавливается в соответствии с ГОСТ 22261-94 и техническими условиями ТУ 4215-020-89650280-2009.

2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- 2.1 Температура анализируемой среды:
- ЭСр-10105-4,2 от 20 °С до 100 °С; ЭСр-10105-3,5 от 5 °С до 100 °С;
- ЭСр-10105-3.0 от минус 5 °С до плюс 100 °С;
- 2.2 В электроде используется хлорсеребряная электрохимическая система. Потенциал электродов относительно нормального водородного электрода при температуре 20 $^{\circ}$ С указан в таблице 1.

Табпина 1

Обозначение	Концентрация КСІ в по-	Потенциал
электрода	тенциалообразующем	относительно
	полуэлементе, моль/дм ³	H.B.9.
ЭСр-10105-4,2	4,2 (насыщенный р-р)	202±3
ЭCp-10105-3,5	3,5	208±3
ЭCp-10105-3,0	3,0	212±3

- 2.3 Нестабильность потенциала электрода за 8 часов работы не более ± 0.5 мВ.
- 2.4 Температурный коэффициент потенциала электрода не превышает $\pm 0.25 \text{ мB}/^{0}\text{C}$ в интервале температур анализируемой среды.
- 2.5 Относительный диффузионный потенциал электрода в растворах с молярной концентрацией кислоты или щелочи не менее 0.2 моль/дм^3 не должен превышать $\pm 12 \text{ мВ}$.
- 2.6 Электрическое сопротивление электрода должно быть в пределах от 2 до 20 кОм при температуре $(20\pm0.5)^{\circ}$ С.
- 2.7 Сведения о содержании драгметаллов в одном электроде приведены в таблице 2.

Таблица 2

Наименование	Масса, г	Примечание	
Электрод	0,1740 ч.в.	проволока Ср 999,9 ∅ 0,5	
	0,1920 л.в.	AgCl	
	(0,1440 ч.в.)		
Итого:	0,3180 ч.в.		

- 2.8 Габаритные размеры электродов: длина 160 мм, диаметр 12 мм.
- **2.9** Характеристики соединительного кабеля и разъема приведены в таблице 3.

Таблица 3

Тип разъема	Длина кабеля, мм	Код
	800	К 80.2
	1000	K 100.2
Наконечник	1400	К 140.2
Пакопечник	1800	К 180.2
	2200	K 220.2
	2600	К 260.2

- 2.10 Масса электрода с кабелем должна быть не более 100 г..
- **2.11** Электрод является невосстанавливаемым однофункциональным изделием.

3 КОМПЛЕКТНОСТЬ

3.1 В комплект поставки входит:

электрод ЭСр-10105- - шт. паспорт - 1 экз. упаковка - 1 шт.

4 ПОДГОТОВКА К РАБОТЕ

- 4.1 Извлечь электрод из упаковки.
- **4.2** Убедиться в отсутствии механических повреждений электрода и соединительного кабеля.
- **4.3** Заполнить электрод электролитом, руководствуясь "Инструкцией по заполнению электрода сравнения ЭСр-10105 электролитом" (Приложение A).
- **4.4** Электрод должен быть заполнен не менее чем на 2/3 раствором. В случае необходимости следует доливать или полностью заменять электролит в электроде.

5 ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ

- **5.1** Транспортирование электродов проводить в упаковке при температуре воздуха от минус 5 °C до плюс 55 °C и относительной влажности воздуха не более 95 % при 25 °C.
- **5.2** Хранить электроды на складах в упаковке при температуре от 5 °C до 40 °C и относительной влажности воздуха 80 % при 25 °C.

6 ПОВЕРКА ЭЛЕКТРОДОВ

Поверка электродов осуществляется один раз в год по Р 50.2.033-2004 ГСИ. Электроды сравнения для электрохимических измерений. Методика поверки.

7 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- **7.1** Изготовитель гарантирует соответствие электрода требованиям ТУ 4215-020-89650280-2009 при соблюдении условий эксплуатации, транспортирования и хранения.
- **7.2** Гарантийный срок эксплуатации электрода 18 месяцев с момента продажи при наработке, не превышающей 1500 часов.

Гарантийный срок хранения 24 месяца до ввода в эксплуатацию.

- **7.3** В случае нарушения работоспособности электрода в период гарантийного срока, он должен быть направлен в адрес поставщика вместе со следующими документами:
 - паспорт на электрод;
 - акт с указанием выявленных неисправностей;
- извещение о непригодности (в случае выявления брака службами ЦСМ) с обязательным приложением протокола испытаний.

Адрес предприятия-изготовителя: 109202, г. Москва, шоссе Фрезер, 12; ООО «Измерительная техника», (495) 232-49-74, 232-42-14.

8 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

8.1 При проведении испытаний, обслуживании и эксплуатации соблюдать требования безопасности по ГОСТ 12.1.007-76.

9 СВИДЕТЕЛЬСТВО О ПОВЕРКЕ

Продавец _____

ИНСТРУКЦИЯ по заполнению электрода сравнения ЭСр-10105 электролитом

Для заполнения электрода рекомендуется применять один из электролитов приведенных в таблице 1. Приготовление этих электролитов описано в п.1 настоящей инструкции.

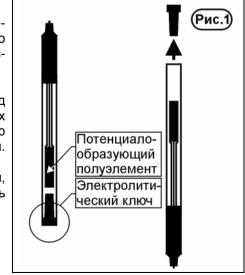
А.1 Приготовление электролита (из расчета на объем раствора 500 $дм^3$).

А.1.1 Взять навеску КСІ в соответствии с таблице 4.

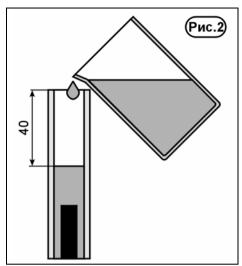
Таблица 4

<u> </u>	
Концентрация KCI, моль/л	Навеска, г
4,2 (насыщ.)	160,000
3,5	130,453
3,0	111,825

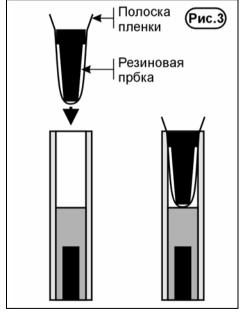
А.1.2 Высыпать навеску КСІ в мерную колбу и долить 300-400 мл дистиллированной воды.


А.1.3 Нагреть раствор до 60 °C...

А.1.4 Покачивая колбу, перемешивать раствор до полного растворения кристаллов KCI.


A.1.5 Охладить раствор до 20 °C (при приготовлении насыщенного раствора КСІ не охлаждать), довести его объем до метки дистиллированной водой и перемешать.

Примечание - При других объемах мерной посуды навеску изменить пропорционально объему.


- **А.2** Разборка электролитического ключа (выполняется только для электрода бывшего в эксплуатации).
- **А.2.1** Повернуть электрод электролитическим ключом вверх и осторожно удалить резиновую пробку с полоской пленки см. рис.1.
- **А.2.2** Перевернуть электрод и, слегка встряхивая его, удалить остатки электролита.

А.2.4 Залить свежий электролит внутрь корпуса электрода до уровня, указанного на рис. 2.

- **А.3** Сборка электролитического ключа:
- **А.3.1** Взять пинцетом полоску пленки, обогнуть ее равномерно по поверхности резиновой пробки, смочить наружную поверхность электролитом и установить в торец электрода, как показано на рис. 3.
- **А.3.2** Перевернуть электрод вниз электролитическим ключом и, встряхивая его, сместить воздушные пузыри в верхнюю часть полости электрода.

